TOPOLOGY

HW4: SELECTED HINTS

1. a. The set of \mathbb{Z} in \mathbb{R} : Not Compact. Consider $(-n / 2, n / 2) \cap \mathbb{Z}$
b. $\{1 / \mathrm{n}: \mathrm{n} \in \mathbb{N}\}$: Not compact since not closed.
c. $\{(\mathrm{x}, \mathrm{y}): \mathrm{y}=\cos x, \mathrm{y} \in[0,1]\}:$ Closed and Bounded in euclidean plane therefore compact.
d. $\{(\mathrm{x}, \mathrm{y}): \mathrm{y}=\tan x, \mathrm{y} \in[0, \pi / 2]\}:$ Not compact since unbounded at $\pi / 2$
2. $(0,1)$ is not compact.

Consider $\{(1 / \mathrm{n}, 1): \mathrm{n} \in \mathbb{N}\}$ as the open cover.
3. $[0,1]$ is not homeo to $(0,1)$ Suppose $f:[0,1]->(0,1)$ a homeo. $[0,1]$ is compact and $(0,1)$ is not.

Contradiction.
4. $\mathbb{Q} \cap[0,1]$ is not compact since it is not closed in $[0,1]$
5. Two compact sets A \& B in Hausdorff space have disjoint open nbds.

Solution : Fix $\mathrm{a} \in \mathrm{A} . \forall \mathrm{b} \in \mathrm{B}$ find disjoint neighborhoods for a and b . Then the open sets for b form an open cover of B which admits a finite subcover. Consider the intersection of open sets around a corresponding to the finite subcover of B.

We have U_{a} around a and $\cup V_{b}$ around B . Now $\forall \mathrm{a} \in \mathrm{A}$ consider similar nbd. A is compact
therefore it has a finite subcover. Consider that finite subcover as an open set U around A . Take the intersection of V_{b} corresponding to the finite subcover of A giving us V around B . Therefore U and V are disjoint open sets around A and B respectively.
6. A is compact subset of a metric space X. Given $x \in X$, show $d(x, A)=d(x, y)$ for some $y \in A$. $d(A, B)=\inf \{d(a, b): a \in A, b \in B\}$ If B is closed and disjoint from A, then $d(A, B)>0$.

Solution : Consider the function $f: A \rightarrow \mathbb{R}$ defined as $f(y)=d(x, y)$. Since A is compact the function achieves the bound. Therefore $\exists y_{0}$ such that $\mathrm{d}(\mathrm{x}, \mathrm{A})=\mathrm{d}\left(\mathrm{x}, y_{0}\right)$ Similarly for function g : $\mathrm{A} \rightarrow \mathbb{R}$ defined as $\mathrm{g}(\mathrm{x})=\mathrm{d}(\mathrm{x}, \mathrm{B})$. It attains the lower bound and therefore $\exists x_{0}$ such that $\mathrm{d}\left(x_{0}, \mathrm{~B}\right)$ $=\mathrm{d}(\mathrm{A}, \mathrm{B})$. But $x_{0} \notin \mathrm{~B}$ and B closed $\Rightarrow \mathrm{d}(\mathrm{A}, \mathrm{B})>0$.

