TOPOLOGY

HW4: SELECTED HINTS

- 1. a. The set of \mathbb{Z} in \mathbb{R} : Not Compact. Consider $(-n/2, n/2) \cap \mathbb{Z}$
 - b. { $1/n : n \in \mathbb{N}$ }: Not compact since not closed.
 - c. $\{(x,y): y = \cos x, y \in [0,1]\}$: Closed and Bounded in euclidean plane therefore compact.

d. {(x,y): y=tan x, y $\in [0, \pi/2]$ } : Not compact since unbounded at $\pi/2$

2. (0,1) is not compact.

Consider $\{(1/n,1): n \in \mathbb{N}\}$ as the open cover.

- 3. [0,1] is not homeo to (0,1) Suppose f: $[0,1] \rightarrow (0,1)$ a homeo. [0,1] is compact and (0,1) is not. Contradiction.
- 4. $\mathbb{Q} \cap [0, 1]$ is not compact since it is not closed in [0, 1]
- 5. Two compact sets A & B in Hausdorff space have disjoint open nbds.

Solution : Fix $a \in A$. $\forall b \in B$ find disjoint neighborhoods for a and b. Then the open sets for b form an open cover of B which admits a finite subcover. Consider the intersection of open sets around a corresponding to the finite subcover of B.

We have U_a around a and $\cup V_b$ around B. Now $\forall a \in A$ consider similar nbd. A is compact 1

HW4: SELECTED HINTS

therefore it has a finite subcover. Consider that finite subcover as an open set U around A. Take the intersection of V_b corresponding to the finite subcover of A giving us V around B. Therefore U and V are disjoint open sets around A and B respectively.

6. A is compact subset of a metric space X. Given $x \in X$, show d(x,A) = d(x,y) for some $y \in A$.

 $d(A,B) = \inf\{d(a,b): a \in A, b \in B\}$ If B is closed and disjoint from A, then d(A,B) > 0.

Solution : Consider the function f: $A \to \mathbb{R}$ defined as f(y) = d(x,y). Since A is compact the function achieves the bound. Therefore $\exists y_0$ such that $d(x,A) = d(x,y_0)$ Similarly for function g: $A \to \mathbb{R}$ defined as g(x) = d(x,B). It attains the lower bound and therefore $\exists x_0$ such that $d(x_0,B) = d(A,B)$. But $x_0 \notin B$ and B closed $\Rightarrow d(A,B) > 0$.